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Abstract  

The urgent decarbonisation of domestic power and transport sectors in England is crucial 

for enabling the green transition and mitigating against the potentially adverse effects of 

climate change. Solar panels (PV) and battery electric vehicles (BEV) are the low carbon 

technologies at the heart of the domestic green transition, with their market share soaring 

over the past decade in England. Effective decarbonisation requires a uniform and just 

transition to clean energy and transport, yet the spatial distribution of domestic solar 

panels and battery electric vehicles remains relatively unexplored in England. To 

understand these patterns of PV and BEV diffusion, literature has studied the determinants 

of adoption, constructing consume profiles to explain the key characteristics of adopters.  

 

This study explores domestic solar panel and battery electric vehicle diffusion in England 

through time and space, from 2011 to 2021 across English local authorities, and finds solar 

panel markets to be more mature. Using local indicators of spatial autocorrelation, this 

study determines distribution of PV and BEV to be spatially organised, finding their regions 

of high adoption to contrast, appearing almost inverse. This has implications for the smart 

energy transition which intends to integrate the transport and mobility sectors using these 

low carbon technologies. Selecting a variety of social, economic, built environment and 

lifestyle characteristics, this study analyses the relative control of local factors in explaining 

solar panel and battery electric adoption using both simple and multiple regression 

models, and a Spearman’s Rank correlation analysis. The local characteristics offered 

conflicting control over determining PV and BEV adoption, explaining the observed distinct 

spatial distribution of these technologies in England. These local characteristics were 

deemed more effective in explaining solar panel adoption, with battery electric vehicle 

adopters appearing a more diverse group. Whilst further research is necessary to better 

understand the forces behind these determinants of adoption and to identify the differing 

determinants of battery electric vehicle adoption, this study is a very useful starting point 

for significantly enhancing understanding of the geographies of the green transition in 

England. To overcome the spatial and temporal mismatch in solar panel and battery 

electric vehicle adoption, this dissertation advocates a more local approach to incentivising 

domestic investment in low carbon technologies. Arguably reducing the observed local 

barriers to adoption could stimulate the necessary urgent and uniform diffusion of 

residential solar panels and battery electric vehicles in England. A rigorous and just green 

transition is fundamental for enhancing unanimous accessibility to aspirational low carbon 

futures and to enable the construction of smart energy systems. 
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1. Introduction  

1.1. Context  

The UK Government is committed to achieving net zero greenhouse gas emissions 

(GHGs) by 2050 as outlined in their 2021 ‘Net Zero Strategy’ (Department for Energy 

Security and Net Zero and Department for Business, Energy & Industrial Strategy, 2021). 

As the second largest emitter of GHGs in EU14 (the 14 EU member states prior to 2004) 

(Office of National Statistics, 2022a), a thorough and extensive decarbonisation of the UK 

economy, shifting dependence away from non-renewable, carbon-intensive forms of 

energy is vital to enhancing energy security and avoiding the potentially adverse impacts 

of climate change (Castaneda et al., 2020; Balcombe et al., 2014). With transport and 

energy, the two most polluting sectors in the UK, cumulatively contributing to 45% of GHG 

emissions in 2020 (Department for Business, Energy & Industrial Strategy, 2022), it is also 

imperative for the UK to focus decarbonisation efforts within these sectors. More 

specifically, decarbonisation efforts must be focused within the home. As households are 

responsible for 26% of national energy emissions (Office of National Statistics, 2022b) and 

83% of the emissions from the transport sector (Office of National Statistics, 2023a), UK 

consumers must play a critical role in the reduction of fossil fuel consumption (Bergman 

and Eyre, 2011) to achieve ambitious net zero targets.  

Domestic decarbonisation is enabled by energy transition technologies (ETT) (Heymann et 

al., 2019). Photovoltaics/solar panels (PV), the most common domestic renewable energy 

installation (UK Alternative Energy, 2023), and electric vehicles (EV), the UK’s primary 

mechanism deployed to reduce GHG emissions in the transport sector (Morton et al., 

2018; Egbue and Long, 2012), are the low carbon technologies at the heart of the 

domestic energy transition. To achieve the UK Government’s recent ambition for all new 

cars and vans to be fully zero emission at tailpipe by 2035 (Department for Transport, 

2022), the decarbonisation of the mobility sector must specifically focus on deployment of 

battery electric vehicles (BEV) (Hardman et al., 2017) which, unlike their rival the plug-in-

hybrid (PHEV), produce no tailpipe emissions (EPA, 2023). Whilst the BEV was introduced 

in 2008 with the Tesla Roadster, very few units were sold until 2012 when BEVs began to 

enter domestic markets (Hardman et al., 2017). The first residential PV was installed in the 

UK in 1994, with PV markets acknowledged as more mature than BEV markets (Wind and 

Sun, 2014), although it wasn’t until 2011 that domestic PV adoption began to take off 

(Brighton Energy Cooperative, undated). Literature observes rapid growth in BEV and PV 

adoption over the last decade (e.g., Balta-Ozkan et al., 2021; Morton et al., 2018). 
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However, the total market share of PVs in conventional energy and vehicle markets 

remains low (Balcombe et al., 2014). 

 

1.2. Study Rationale  

Increasing pressure on enhancing ETT adoption has motivated research into the 

characteristics of EV and PV diffusion/spread through society, identifying possible barriers 

and motivators to EV and PV adoption (van der Kam et al., 2018). Understanding patterns 

of PV and EV adoption is vital for gauging the timeframes associated with visions of a 

smart clean energy system in the UK (van der Kam et al., 2018). To enable 

decarbonisation processes, the UK government are reliant on the construction of smart 

energy infrastructure which involves an integration of the power and mobility sectors (van 

de Kam et al., 2018). With ETTs operating either the production or consumption of 

electricity, smart energy systems intend to relieve resulting heightened pressure on the 

electricity grid, including the prospective drain from BEVs (Department of Transport, 2022). 

PVs and BEVs present a prime opportunity to integrate these sectors; the intermittent 

power generation of PVs is optimal to match the discontinuous electricity demand from 

EVs, connected through smart charging infrastructure (Gomes and Suomalainen et al., 

2020). Adoption of EVs and PVs in synergy facilitates the necessary simultaneous 

decarbonisation of both the energy and mobility sector. Although still in the development 

process, the vehicle-to-grid (V2G) system is the forthcoming technology designed to 

enable the construction of smart energy infrastructure. Essentially, when electricity supply 

is low but demand is high, V2G infrastructure allow EVs plugged into the grid to release 

power back into circulation, thus alleviating the excess pressure on the grid (House of 

Commons Library, 2023). The UK Government has expressed serious interest in deploying 

the V2G technology, launching innovation campaigns and £30 million of investment in 

2017 and 2018 for technology development (House of Commons Library, 2023).  

 

The construction of smart energy systems is dependent on co-adoption of PVs and BEVs, 

yet literature has observed spatially and temporally distinct patterns of PVs and BEVs in 

the UK (Balta-Ozkan et al., 2021; Morton et al., 2018). BEV and PV diffusion is rarely 

studied simultaneously, so the feasibility and pace of the smart energy transition in the UK 

remains relatively unknown (Gomes and Suomalainen et al., 2020). Analysis of the spatial 

distribution of BEVs and PVs and defining their corresponding consumer groups, can help 

to determine the readiness of the UK in its transition to a sustainable smart energy system 

(van der Kam et al., 2018). Studying the geographies of BEV and PV diffusion is vital to 



3 
 

understanding the local characteristics which motivate their adoption (Collier et al., 2023). 

Critical insight into the current status of BEV and PV diffusion patterns in the UK can help 

shape more effective policies to stimulate the crucial further growth of domestic ETTs 

necessary to meet ambitious decarbonisation targets in the UK (Nayum et al., 2016; Plotz 

et al., 2014).  

 

1.3. Aims  

This dissertation intends to analyse patterns of both BEV and PV adoption in English local 

authorities from 2011 to 2021. Employing well established techniques, this study presents 

pioneering research exploring the changing spatial distribution of BEVs and PVs in 

England throughout the last decade. Using a regression model, this dissertation will also 

explore the relative importance of selected barriers and motivators to ETT adoption taken 

from the most recent Census data (2021) which has not yet been analysed in literature. 

Drawing together the spatial and temporal diffusion patterns of BEV and PV adoption, this 

study will finally determine the feasibility of the smart energy transition by assessing the 

spatial convergence of ETT uptake within English local authorities in 2021.   

 

1.4. Research Questions (RQs) 

a. How has the distribution of domestic PVs and BEVs in England changed from 2011 

to 2021? 

b. How does the distribution of domestic PVs and BEVs differ in England? 

c. To what extent do social, economic, built environment and lifestyle characteristics 

explain adoption patterns of domestic PVs and BEVs in England? 

 
 
 

2. Literature Review  

 

2.1. Innovation Adoption Theory. 

The term ‘early adopter’ refers to the early user group of a new technology (Rogers, 2003; 

Santini and Vyas, 2005). This first large group of adopters play a crucial role in 

catalysing/defining roll-out of technology diffusion (Nath, 2016; van der Kam et al., 2018). 

Rogers’ technology adoption diffusion theory (2003) characterises pathways of technology 

adoption, shifting from initial ‘innovators’ (first 2.5% of adopters) to ‘early adopters’ 

(following 13.5%) and then to ‘majority markets’. The penetration of new technologies into 
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larger markets is a slow process (Nygren et al., 2015; Snape, 2016) as consumers do not 

act as rational economic agents. Whilst investing in a technology might make financial 

sense, this often does not translate into an investment (Hardman et al., 2017). The 

differing socio-demographic characteristics of adopter groups may determine their decision 

to invest in a technology at certain periods in time (van der Kam et al., 2018). Studying the 

spatial configuration of diffusion and the timing of adoption can help identify various 

motivations and barriers to adoption, useful for developing appropriate and effective 

incentive policies (Müller and Rode, 2013).  

Literature suggests that the UK is in the early adopter stage for both BEV and PV diffusion 

(Morton et al., 2018; Balta-Ozkan et al., 2021). These ETTs are still developing and are yet 

to become financially competitive with traditional mobility vessels (i.e., cars with 

combustion engines) and power sources (i.e., fossil fuel combustion) (Mukherjee and 

Ryan, 2020). Like Plotz et al. (2014) this dissertation also applies the innovation adoption 

theory in a more practical manner, using the term ‘early adopter’ to refer to the current 

private BEV and PV consumer groups.  

 

 

2.2. Determinants of Adoption.  

Understanding the socio-economic and behavioural attributes of innovation adopters and 

local characteristics which determine ETT adoption, is useful for defining the predictors of 

technology diffusion (Rogers, 2003).  

 

The socio-psychological controls over early adoption of ETTs is a prominent consideration 

in literature. These are factors which influence consumer perception, behaviour and 

acceptance of a technology (Egbue and Long, 2012). The theory of planned behaviour and 

the rational choice theory come up most frequently in literature to explain the behaviour of 

early ETT adopters, suggesting people act based on an evaluation of consequences 

(Ajzen, 1991; Moons and De Pelsmacker, 2012; Wang et al., 2019; Nayum and 

Simsekoglua, 2016). Intentions and attitudes of potential adopters, including knowledge 

and experience of a technology, therefore act as useful predictors of behaviour (Egbue 

and Long, 2012; Rezvani et al., 2015; Lane and Potter, 2007; Moons and De Pelsmacker, 

2012; Sovacool and Hirsh, 2009). Technologies can help individuals express and define 

themselves thus embodying symbolic meaning, with ETT adopters potentially looking to 

convey a particular message (Burgess et al., 2013; Noppers et al., 2014; Schuitema et al., 

2013). Finally, the influence of ‘peer/neighbourhood effects’ is the subject of a huge body 
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of literature on technology adoption, found to play a very important role in determining ETT 

adoption tendencies (e.g., McCoy and Lyons, 2014; Palm, 2018; Mcshane et al., 2012). 

This phenomenon can be used to explain the development of social norms and ‘green 

neighbourhoods’ which contain significant high clusters of ETTs (Kahn, 2007).  

 

Previous studies have identified a wealth of potential determinants of both domestic EV 

and PV adoption. Figure 1 captures the key barriers and motivators to adoption divided 

into the eight recurring categories found in literature. The relative importance and effect on 

adoption varies for most characteristics outlined in figure 1, with most identified as both a 

barrier in some studies and a motivator in others. For EVs, literature emphasises the 

importance of distinguishing between BEVs and PHEVs due to their often-contrasting 

influence over adoption tendencies, with BEVs more frequently purchased as a second car 

(Anable et al., 2013). Generally, EVs are found to cluster in more densely populated areas, 

particularly small towns or suburban locations, whilst PVs are located in more rural regions 

(Kihm and Trommer, 2014). High purchase price has consistently been identified as a 

barrier to adoption (Nayum and Simsekoglua, 2016), therefore BEV and PV markets are 

generally located in economically prosperous regions (Morton et al., 2018). Whilst 

environmental attitudes have been shown to influence both EV and PV adoption (Ziegler, 

2012), literature generally suggests environmental values do not necessarily translate to a 

willingness to pay, proposing economic motives as a more decisive factor for early 

adoption (Hidrue et al., 2011; Egbue and Long, 2012).  

Range anxiety specifically applies to EVs. The concern that EVs will not be able to travel 

far without needing recharging (Plotz et al., 2014; Skippon and Garwood, 2011) is a crucial 

barrier to adoption. Literature has therefore observed a positive impact of charging 

infrastructure on EV adoption to manage range anxiety (Sierzchula, 2014). However, the 

complex chicken and egg causal relationship of charging infrastructure and EV adoption 

makes it difficult to determine the genuine effect of charging infrastructure (Merksy et al., 

2016; Coffman et al., 2017). Solar irradiation is the only factor specifically relevant for PV 

installation, with literature emphasising its importance for early adopters (e.g., Balta-Ozkan 

et al., 2015; Snape, 2012).  

Literature identifies conflicting socio-demographic factors characterising PV and BEV 

adopters. Early PV adopters are generally determined to be white, well-educated, middle-

aged males, (e.g., Balcombe et al., 2013; Sardianou and Genoudi, 2013, Bartiaux et al., 

2016), who reside in larger houses, particularly detached houses (Claudy et al., 2011; 

Balta-Ozkan et al., 2015), located in less densely populated areas (Graziano and  
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Gillingham, 2015; Comello et al., 2018). Whilst literature has found potential PV adopters 

to be excited by opportunities for protection from energy prices, uncertainties about the 

  
 

Figure 1. Summary diagram of the key determinants of electric vehicle and solar panel 
adoption identified in literature (references cited in text). Those explicitly relevant to EVs 
are marked in blue and for PVs are marked in red. The variables marked in bold text are 
studied in this dissertation.  
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nature of PV technology, particularly regarding payback, reliability and maintenance, could 

possibly negate installation (Balcombe et al., 2014). Ample studies have found income to 

positively correlate to PV adoption (Kwan, 2012; Müller and Rode, 2013), suggesting that 

high earners are more likely to install due to the high capital cost (van der Kam et al., 

2018). Others suggest disposable income is more important than gross annual income 

(Balta-Ozkan et al., 2015). Conversely, EV adopters generally have a higher social status, 

work full-time and own their own homes (Muhkerjee and Ryan, 2020; Plotz et al., 2014). 

This group of early adopters are typically young or middle aged, live in larger households, 

own more cars, are well educated and are typically male, (e.g., Muhkerjee and Ryan, 

2020; Morton et al., 2018) although the effect of gender is also contested in literature 

(Wang et al., 2016; Nayum and Simsekoglua, 2018). Literature emphasises the vast and 

complex network of local characteristics which determine the unique patterns of ETT 

diffusion.  

 

To stimulate PV and BEV adoption, monetary and non-monetary policies produced by 

national governments have been designed to address these barriers to adoption (Hirdue et 

al., 2011; Heymann and Miranda et al., 2019). Literature determines financial policies as 

the most common method of incentivising uptake (Rezvani et al., 2015), as overcoming 

fiscal barriers, like high purchase price and long payback times, is fundamental to 

accelerating the initial growth in early adoption. The UK has traditionally developed 

national incentives, notably the Plug-in Car Grant for EVs and the Feed-in-Tariff for PVs 

(International Council on Clean Transportation, 2016). 

 

To meet the mandatory emissions reduction targets for new cars implemented by EU 

legislation by 2009, the UK government has successfully introduced policies to incentivise 

adoption of EVs (House of Commons Library, 2023; Egbue and Long, 2012; Hardman et 

al., 2017). Literature emphasises difficulties measuring the actual effect of incentives, 

however generally, a positive relationship between EV incentives and EV sales is 

observed in the UK (Sierzchula et al., 2014).   

These incentives are largely fiscal, moderating the high costs associated with investing in 

an EV. The UK government has spent £1.5 billion funding the Plug-in Car Grant (PIG) 

introduced in 2010, and although the categories and thresholds have become more 

stringent over the decade, it has supported the purchase of almost half a million vehicles 

(House of Commons Library, 2023). However, in 2020 a managed exit from the scheme 

was announced. Additionally, exemption from the Vehicle Exercise Duty (VED), the tax 
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applicable to all vehicles driving on UK roads (Office for Low Emission Vehicles, 2018; 

Santos and Rembalski, 2021), further reduces the costs associated with EV adoption. The 

UK government have more recently shifted their focus towards extending public EV 

charging infrastructure (International Council on Clean Transportation, 2016; Hardman et 

al., 2016). This includes the £950 million rapid charging fund introduced in 2020 to fund 

the rollout of 6000 high powered charge points across England, and the £500 million of 

funding allocated to local authorities to enhance charge point coverage (Department for 

Transport, 2022).  

PV government incentives are also predominantly fiscal (Palm, 2018; Bunea et al., 2020). 

Since initial incentives have been implemented in the UK in 2010, small-scale PV uptake 

has flourished (Balcombe et al., 2014; Cherrington et al., 2013). The Feed-in Tariff (FiT) is 

the main government policy designed to promote the uptake of household renewable 

energy/low carbon technology, encompassing PVs alongside other ETTs like wind and 

hydropower (Ofgem, 2023; Cherrington et al., 2013). The tariff is paid to PV owners, 

receiving a payment for each kWh of PV energy produced and selling excess electricity 

back to suppliers at an export tariff rate (Castenda et al., 2020). Introduced in 2010, the 

initial FiT rates were generous but since 2011 the severe decline in PV costs and rise in 

PV installations has seen the value of the tariffs steadily reduce (Smith et al., 2014; 

Candelise et al., 2013). Despite the subsidy cuts, triggering an increase in payback 

periods for the technology, domestic installations continued to increase throughout the last 

decade. The announcement of scheme closing in April 2019, prompted a rush in PV 

installations before the deadline, despite being replaced with the Smart Export Guarantee 

in 2020 (Castenda et al., 2020). 

 

2.3. Co-adoption of EVs and PVs 

The co-adoption of EVs and PVs is relatively understudied in the literature (Araújo et al., 

2019). Van der Kam et al. (2018) present a novel paper comparing the influence of socio-

demographic factors on diffusion patterns of EVs and PVs in the Netherlands, identifying a 

geographical misfit in spatial adoption patterns. They note the implications of this 

mismatch for the smart energy transition which is dependent on the adoption of EVs and 

PVs in synergy (Heymann and Miranda, 2019) and advocate a policy shift to promote the 

co-adoption of EVs and PVs.   
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3. Methodology  

This dissertation analyses the dynamic and diverging patterns of BEV and PV diffusion in 

England from 2011 to 2021. Local Moran’s I statistics are deployed to identify areas of 

significant BEV and PV clustering for their 2021 datasets. Using a regression model and 

further Moran’s I spatial analysis, local characteristics are also applied to the 2021 BEV 

and PV datasets to determine which variables offer the most explanatory power over the 

adoption of BEVs and PVs in England.  

 

3.1. Dependent variables   

The dependent variables, BEV and PV adoption, used in the regression model are outlined 

in table 1. Data on BEV registrations originates from the Department for Transport (DfT) 

and Driver and Vehicle Licensing Agency (DVLA). This dissertation is specifically focusing 

on fully electric vehicles as they will characterise the green mobility transition given the UK 

Government is committed to removing tailpipe emissions by 2035. The BEV dataset for 

this study therefore only includes privately owned battery electric or range extended cars 

(both have no tailpipe emissions). Data for residential PVs is taken from the Department 

for Business, Energy and Industrial Strategy (BEIS), specifically small-scale (not 

exceeding 5MW) domestic FiT accredited PVs. Whilst this does not cover all domestic PV 

investments, as some individuals may have installed PVs without utilising the government 

grant, this is the most thorough and extensive dataset on PV adoption in England. 

However, the slow FiT accreditation process might produce a lag in the PV data, running a 

few months behind real time instalments.  

All BEV and PV data has been extrapolated, compiled and processed in MS Excel, with 

maps produced in ArcGIS. To enable comparison, PV and BEV adoption have been 

normalised to the number of instalments/registrations per 1000 people. Figure 2 depicts 

the distribution of both BEVs and PVs per 1000 people in English local authorities for 

2021, with datasets composed of local authority scale data. These local authority district 

boundaries (LADs) are defined by the Office for National Statistics (ONS) in April 2021 

(ONS, 2021) and compose the seven wider regions in England marked in figure 3. The 

analysis of PV and BEV diffusion, including the spatial autocorrelation analysis and 

regression analysis, is all performed for 2021 datasets. However, this dissertation also 

contrasts the distinct patterns of BEV and PV adoption from across the past decade, 2011 

to 2021.
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Code Description  Detailed Description Units Year  Data 
Scale 

Data Source  

PV PV Adoption The number of domestic Feed-in-Tariff (FiT) accredited photovoltaic 
installation per 1000 people within each local authority. It often takes several 
months for the FiT accreditation to be registered by the BEIS so this is not a 
direct representation of December 2021.  

Per 1000 
people 

December 
2021 

Local 
authority 

Department for 
Business, Energy 
and Industrial 
Strategy (BEIS) 

BEV BEV Adoption  The number of Battery Electric Vehicles (BEV) and Range Extended Electric 
Vehicles (REEV) registered per 1000 people within each local authority. This 
does not include Plug-in-Hybrids. This only includes privately owned vehicles, 
not company vehicles. This only includes cars, not vans. The vehicle location 
is based on where the keeper's address is registered, this does not 
necessarily reflect the exact location of the vehicle.  

Per 1000 
people 

December 
2021 

Local 
authority 

Department for 
Transport (DfT) 
and Driver and 
Vehicle Licensing 
Agency (DVLA) 

AGE Age  The median age of usual residents* in each local authority population. Age is 
taken as the age as of someone's last birthday. Infants under one years old 
are classed as 0.  

Median (of 
residents) 

March 
2021 

Local 
authority 

Census 2021   

ED0 Education 
Level - Qual 
None 

Percentage of usual residents (aged over 16) in each local authority with no 
formal qualifications. 

% (of 
residents)  

March 
2021 

Local 
authority 

Census 2021 

ED1 Education 
Level – Qual 1 
& 2 c 

Percentage of usual residents (aged over 16) in each local authority with 
Level 1 or 2 as their highest level of qualification. 
  
Level 1: 1 to 4 GCSEs grade A* to C, any GCSEs at other grades, O levels or 
CSEs (any grades), 1 AS level, NVQ level 1, Foundation GNVQ, Basic or 
Essential Skills.  
Level 2 qualifications: 5 or more GCSEs (A* to C or 9 to 4), O levels (passes), 
CSEs (grade 1), School Certification, 1 A level, 2 to 3 AS levels, VCEs, 
Intermediate or Higher Diploma, Welsh Baccalaureate Intermediate Diploma, 
NVQ level 2, Intermediate GNVQ, City and Guilds Craft, BTEC First or 
General Diploma, RSA Diploma.  

% (of 
residents) 

March 
2021 

Local 
authority 

Census 2021 

ED3 Education 
Level – Qual 3 
& 
Apprenticeship  

Percentage of usual residents (aged over 16) in each local authority with 
Level 3 or an apprenticeship as their highest level of qualification. 
  
Level 3 qualifications: 2 or more A levels or VCEs, 4 or more AS levels, 
Higher School Certificate, Progression or Advanced Diploma, Welsh 

% (of 
residents)  

March 
2021 

Local 
authority 

Census 2021 
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Baccalaureate Advance Diploma, NVQ level 3; Advanced GNVQ, City and 
Guilds Advanced Craft, ONC, OND, BTEC National, RSA Advanced Diploma. 

ED4 Education 
Level – Qual 4 

Percentage of usual residents (aged over 16) in each local authority with 
Level 4 qualifications. 
  
Level 4 qualifications and above: degree (BA, BSc), higher degree (MA, PhD, 
PGCE), NVQ level 4 to 5, HNC, HND, RSA Higher Diploma, BTEC Higher 
level, professional qualifications (including teaching, nursing, accountancy). 

% (of 
residents) 

March 
2021 

Local 
authority 

Census 2021 

SIZ Household 
Size  

Modal number of usual residents in households** of each local authority.  Mode (of 
residents) 

March 
2021 

Local 
authority 

Census 2021 

INC Household 
Income  

Median household income of usual residents. This does not cover the self-
employed or those not paid in the reference period. The data includes 
furloughed employees under the Coronavirus Job Retention Scheme (CJRS).  

Mean (£k) 
(per 
household) 

April 2020 
to April 
2021 

Local 
authority 

Annual Survey of 
Hours and 
Earnings (ASHE) 

VAL House Value  Median house price for all dwelling types by local authority.  Mean 
(£100k)  
 
(per 
household) 

Year 
ending 
December 
2021 

Local 
authority 

House Price 
Statistics for Small 
Areas (HPSSAs) 
data release by 
the Office of 
National Statistics  

REN Renter 
Occupied  

Percentage of the local authority households which rent a property. Includes 
socially rented and privately rented accommodation.   

% (of 
residents) 

March 
2021 

Local 
authority 

Census 2021 

DEN Population 
Density  

Estimated 1000 usual residents who live within an area per km2. Calculated 
using population estimates to the nearest hundred. 

1000 
residents 
per km2 

March 
2021 

Local 
authority 

Census 2021 

HOU Dwelling Type 
– House 

The proportion of households within a local authority whose 
accommodation*** is a detached house (whole house or bungalow not divided 
into flats or other living accommodation and not attached to another property). 

% (of 
residents) 

March 
2021 

Local 
authority 

Census 2021 

DUP Dwelling Type 
– Duplex 

The proportion of households within a local authority whose accommodation is 
a either a semi-detached house (living accommodation is joined to another 
house or bungalow by a common wall that they share) or a terraced house 
(house is located between two other houses and shares two common walls). 

% (of 
residents) 

March 
2021 

Local 
authority 

 Census 2021 
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UNI Dwelling Type 
– Unit  

The proportion of households within a local authority whose accommodation is 
a either a flat/apartment/maisonette, a shared house, or in a commercial 
building. 

% (of 
residents) 

March 
2021 

Local 
authority 

Census 2021 

CHA Charging 
Points 

The number of public electric charging points per 1000 people in each local 
authority. This does not include charging devices not open to the public such 
as private or domestic chargers. A charging device may have more than one 
charging connector and be able to charge more than one vehicle at a time, 
therefore these figures do not reflect overall charging capability. 

Per 1000 
people 

April 2021 Local 
authority 

Department for 
Transport (DfT) 
and Office for 
Zero Emission 
Vehicles (OfZEV), 
2021 

GAS Gas Heating  Proportion of households who only use mains gas as their fuel source for 
central heating****. This does not include households which use gas in 
addition to another fuel source.  

% (of 
residents) 

March 
2021 

Local 
authority 

 Census 2021 

CAR Cars per 
Household 

Median number of cars owned or available for use by household members. 
This does not include vans motorbikes, trikes, quad bikes or mobility scooters.  

Median 
(per 
household) 

March 
2021 

Local 
authority 

 Census 2021 

DRI Car driver or 
car passenger 
to work  

The proportion of the local authority usual residents (aged over 16) who drove 
or are a passenger in a car or a van to work. People who were furloughed 
(about 5.6 million) were advised to answer the transport to work question 
based on their previous travel patterns before or during the pandemic. This 
means that the data does not accurately represent what they were doing on 
Census Day. 

% (of 
residents) 

March 
2021 

Local 
authority 

 Census 2021 

 
* A usual resident is anyone who on Census Day, 21 March 2021 was in the UK and had stayed or intended to stay in the UK for a period of 12 
months or more, or had a permanent UK address and was outside the UK and intended to be outside the UK for less than 12 months (Census, 2021). 
 
** A household is defined as one person living alone or a group of people living at the same address who share cooking facilities and share a living 
room or sitting room or dining area. A household must have at least one usual resident at the address (Census, 2021). 
 
*** Accommodation is defined as the type of building or structure used or available by an individual or household. 
 
**** Central heating is a heating system used to heat multiple rooms in a building by circulating air or heated water through pipes to radiators or vents. 

 
Table 1. Description and source of data sets for the independent and dependent variables in the regression analysis.  
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Both ETTs only began to hit consumer 

markets in 2011, although Section 1.1. 

notes BEVs lag slightly behind more the 

mature PV markets. Therefore, this ten-

year period has been selected to analyse 

the evolution of BEV and PV adoption as 

they transition from innovator to early 

adopter markets (Rogers, 2003). Figure 4 

captures the rapid growth in BEV and PV 

adoption from 2011 to 2021, as the ETTs 

begin to enter much larger markets.  

 

3.2. Independent variables  

This dissertation has identified twelve local 

characteristics, two of which are divided into hierarchical categories, as the independent 

variables for the regression model. These local characteristics were selected from 

literature and quantifiable with available data sources, so were identified as appropriate 

proxies for ETT adoption. The twelve independent variables have been divided into four 

categories: social, economic, built environment and lifestyle (marked in table 2), ensuring a 

Figure 3. The regions of England 

 
Figure 2. BEV (a) and PV (b) adoption by English local authority in 2021  

a b 
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diverse range of characteristics were included. Table 1 contains the descriptions and 

parameters of each independent variable. The datasets have all been taken from 2021, 

with the majority included in the most recent Census, taken on the 21st of March 2021 and 

others from reliable data collection bodies. Census data is collected every 10 years in the 

UK, with the recent Census data only released in late 2022/early 2023. Resultingly, the 

 
 

Figure 4. Change in the number of battery electric vehicles (a) and solar panels (b) 
per 1000 people by region in England from 2011 to 2021. 
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contemporary Census data is relatively unexplored in literature, with this dissertation 

undertaking pioneering research into the latest determinants of PV and BEV adoption. 

Table 3 encloses the descriptive statistics for each of the local characteristics, an average 

value for each variable from across the whole of England in 2021, their units are enclosed 

in table 1. The influence of each independent variable on BEV/PV adoption discussed in 

literature is outlined in table 4, a useful benchmark for comparing the results of this 

dissertation. It is important to note that although this study exclusively assesses BEVs, 

previous studies typically explore all EVs so this could explain some potentially conflicting 

results. Whilst some variables have a decisive and universal impact in either stimulating or 

obstructing EV and PV adoption, the influence of other variables is often contested in 

literature. For example, previous studies consistently observe that PVs are clustered in 

lower density, suburban or rural environments (e.g., Davidson, 2014), whereas EVs are 

predominantly clustered in higher density urban areas (e.g., Sierzchula et al., 2014). 

Local characteristic Category Mean Standard deviation Median 

PV Adoption  Dependent variable 13.890 8.008 12.782 

BEV Adoption  Dependent variable 6.186 10.283 3.949 

Age   

 

 

Social 

41.935 4.934 42 

Education – Qual None  17.7 3.932 17.4 

Education – Qual 1 & 2  23.523 3.604 24.3 

Education – Qual 3 & 
Apprenticeship  

22.6 3 23.2 

Education – Qual 4  33.429 8.652 32.1 

Household Size  1.838 0.368 2 

Household Income   

Economic 

25.679 5.821 25.567 

House Value  306 141.587 277 

Renter Occupied  15.8 5.902 14.2 

Population Density   

 

Built Environment 

1.804 2.537 0.746 

Dwelling Type – House  25.776 12.613 26.9 

Dwelling Type – Duplex  53.626 11.656 53.8 

Dwelling Type – Unit  19.306 15.521 14.5 

Charging Points 0.337 0.479 0.237 

Gas Heating   

Lifestyle 

74.358 9.786 77.1 

Cars per Household 1.226 0.360 1.242 

Car driver or car 
passenger to work  

50.697 13.350 54.4 

 

Table 2. Descriptive statistics for the independent and dependent variables and their 
respective thematic categories used in the regression model for England in 2021.  
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Variable  

 
PV Adoption 

 

 
EV Adoption 

Description Reference Description Reference 

 
 
 
 

 
Age 

Contested in literature but generally 
found that older or middle-aged 
people are more likely to adopt.  
 
Younger age groups more willing to 
install but are less likely to invest 
due to financial barriers.  
 
Middle age groups more likely to 
install. 
 
Positive relationship between age 
and PV adoption.  

(Islam, 2014; Balcombe et 
al., 2013 ; Willis et al., 2011) 
 
(Araujo et al., 2019; 
Sardianou and Genoudi, 
2013) 
 
(Dharshing, 2017; Graziano 
and Gillingham, 2015; 
Balcombe et al., 2013; Kwan, 
2012) 

Bell shaped curve with adopters 
– the adoption peak lay with 
middle aged people.  
 
Positive relationship between 
age and EV adoption.  
 
Negative relationship between 
EV adoption and residents aged 
over 59 years.  
 
Bell curve of adoption – early 
adopters of EVs are typically 
younger or middle-aged.  

(Hidrue et al., 2011; 
Westin et al., 2018) 
 
(Araujo et al., 2019) 
 
(Plotz et al., 2014; 
Hidrue et al., 2011; 
Nayum et al., 2018; 
Bollinger and 
Gillingham, 2012; 
Kwan, 2012) 

 
Education 

Level - Qual 
None 

Generally, positive relationship 
between education status and PV 
adoption observed. Possible 
alternative is that those with 
technical/vocational qualifications 
could be more likely to adopt. 
 
Positive relationship with education 
status and PV adoption. 
 
No statistically significant 
relationship of education status.  
 
Those with technical/vocational 
qualifications more likely to adopt.   

(Van der Kam et al., 2015; 
Bollinger and Gillingham, 
2012; Kwan, 2012; Palmer et 
al., 2015, Claudy et al., 2011; 
Balta-Ozkan et al., 2021; 
Davidson et al., 2014; Jager, 
2006; Keirstead, 2007) 
 
(Sommerfeld et al., 2017) 
 
(Balta-Ozkan et al., 2015) 
 

Largely, a positive relationship 
between education status and 
EV adoption but some studies 
found no link.  
 
Positive relationship with 
education and EV adoption.  
 
No relationship between EV 
adoption and education status – 
ambiguous predictor of 
adoption.  
 
EV owners have more university 
degree level qualifications 
compared to non-EV owners.  

(Westin, 2018; 
Dickerson and Gentry, 
1983; Im et al., 2003; 
Vergis and Chen, 2015; 
Coffman, 2017; McCoy, 
2014, Kwan, 2012; 
Balcombe, 2014, 
Claudy et al., 2010; 
Mukherjee and Ryan, 
2020; Nayum et al., 
2016, Plotz et al., 2014; 
Nayum et al., 2018; 
Araujo, 2018) 
 
(Sierzchula et al., 2014) 
 
(Westin et al., 2018; 
Keirstead, 2007) 

 
Education 

Level – Qual 1 
& 2 

 
Education 

Level – Qual 3 
& 

Apprenticeship 

Education 
Level – Qual 4 
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Household 
Size 

Smaller households more likely to 
adopt.  

(Balta-Ozkan et al., 2015; 
Keirstead, 2007) 

Larger households are more 
likely to adopt. 

(Nayum et al., 2016; 
Morton et al., 2018) 

 
 
 
 
 

 
 

Household 
Income 

Contested in literature. Some 
studies show income to have no 
effect, others a positive effect, and 
some a negative influence on PV 
adoption.  
 
Statistically insignificant 
relationship reported.  

 
Positive effect of income on PV 
adoption.  
 
Positive impact until a certain 
threshold and then this begins to 
have the opposite effect. 
 
Negative impact of income. 

(Graziano and Gillingham, 
2015; Sierzchula et al., 2014) 
 
(Briguglio and Formosa, 
2017; Müller and Rode, 2013; 
Rode and Weber, 2012; 
Sardianou and Genoudi, 
2013; Vasseur and Kemp, 
2015; Kwan, 2012, 
Dharshing, 2017; Lan et al., 
2021; Balcombe et al., 2014; 
Nayum et al., 2016).  
 
(Lan et al., 2021) 
 
(Balta-Ozkan, 2021; Bollinger 
and Gillingham, 2012; 
Schaffer and Brun, 2015; 
Islam and Meade, 2013; Van 
der Kam et al., 2018) 

Generally, a positive relationship 
between income and EV 
adoption.  
 
Positive relationship with EV 
adoption and income.  
 
Ambiguous results.  

(Araujo et al., 2019; 
Westin et al., 2018; 
Nayum et al., 2016; 
Curtin et al, 2009; 
Nayum et al., 2018; van 
der Kam et al., 2018) 
 
(Hidrue et al., 2011) 

 
 

House Value 

Contested in literature. Some 
studies find house value to have 
positive effect on adoption while 
others suggest its effect is 
ambiguous. 

(Kwan, 2012) 
 
(Palm, 2018) 

Positive influence of house 
value on EV adoption.  

(Araujo et al., 2019; 
Kwan, 2012) 

 
 

Renter 
Occupied 

Residents in rented 
accommodation less likely to install 
PVs than homeowners.  

 

(Briguglio and Formosa, 
2017; Graziano and 
Gillingham, 2015; Keirstead, 
2007; Schaffer and Brun, 
2015; Sommerfeld et al., 
2017; Balcombe et al., 2013; 
Davidson et al., 2014) 

Residents in rented 
accommodation less likely to 
purchase EVs.  
 

(Mukherjee and Ryan, 
2020) 

 
Population 

Density 

PVs typically clustered in rural, or 
lower density suburban 
environments.  

(Van der Kam et al., 2018; 
Davidson, 2014; Muller and 
Rode, 2013; Kwan, 2012; 

Generally, EV adoption rates are 
higher in more densely 
populated/urban areas.  

(van der Kam et al., 
2018; Sierzchula et al., 
2014)  
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 Balta-Ozkan et al., 2015 and 
2021) 

EV adoption clusters with 
urbanity.  
 
Negative correlation between 
EV adoption and population 
density. 

 
(Araujo et al., 2019) 

Dwelling Type 
– House 

Dwellings with their own roof space 
are more likely to install PVs.  
 

(Briguglio and Formosa, 
2017; Van der Kam et al., 
2018) 
 

Not studied in literature.  Not studied in literature.  

Dwelling Type 
– Duplex 

Dwelling Type 
– Unit 

 
 
 

Charging 
Points 

Not studied in literature.  Not studied in literature.  Largely, a positive influence of 
charging infrastructure on EV 
adoption identified.  
 
Positive association between 
charging infrastructure and EV 
adoption.  
 
Ambiguous effect.  

(Morton et al., 2018; 
Van der Kam et al., 
2018; Mukherjee and 
Ryan, 2020; Mersky, 
2016; Coffman et al., 
2017; Sierzchula et al., 
2014) 
 
(Plotz et al., 2014) 

Gas Heating No clear relationship between gas 
heating and PV adoption.  

(Balta-Ozkan et al., 2021) Not studied in literature.  Not studied in literature.  

 
 
 

Cars per 
Household 

Not studied in literature.  Not studied in literature.  Generally found a positive effect 
of owning more cars on EV 
adoption but some studies 
suggest this is ambiguous. 
 
Positive effect of car ownership.  
 
Ambiguous results. 

(Morton, 2018; van der 
Kam et al., 2018; 
Kurani, 1996) 
 
(Plotz et al., 2014) 
 

Car driver or 
car passenger 

to work 

Not studied in literature.  Not studied in literature.  Negative relationship with EV 
adoption and using public 
transport to work.  

(Araujo et al., 2019) 

Table 3. The various influences of independent variables on electric vehicle and solar panel adoption observed in literature. 
Any conflicting results are marked in italics with respective literature sources identified in the adjacent column. 
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A similar phenomenon is observed for household size, with smaller households less likely 

to adopt PVs (e.g., Balta-Ozkan et al., 2015) whilst more likely to adopt EVs (e.g., Morton 

et al., 2018). The impact of variables like education status and household income are more 

contested in literature, with previous studies observing positive, negative and insignificant 

relationships with EV and PV adoption (e.g., Van der Kam et al., 2018). However, some 

variables exert the same influence on both EVs and PVs, for example tenants are 

determined as less likely to purchase EVs and PVs (e.g., Balcombe et al., 2013; 

Mukherjee and Ryan, 2020) than homeowners, and middle-aged people are the most 

likely age group to adopt EVs and PVs (e.g., Araujo et al., 2019).  

The simultaneous diffusion of BEVs and PVs is unexplored across England. This study 

therefore intends to compare patterns of BEV and PV adoption and explore the extent to 

which these local characteristics explain the spatial variation of adoption in England using 

novel Census data.  

 

3.3. Data limitations  

The configuration of English LAD boundaries has changed throughout the study period, 

most recently in 2019 and 2020 when local authorities in Somerset, Suffolk, Dorset, 

Buckinghamshire and Northamptonshire were merged (ONS, 2021). These boundary 

changes presented complications when comparing changes in BEV and PV adoption 

through time, potentially tampering with data from these local authorities. The local 

authority scale data has historically been deployed for this type of study, providing a 

comprehensive and detailed overview of BEV and PV adoption at regional and national 

scales (Balta-Ozkan et al., 2018; Morton et al., 2019). However, the local authority scale is 

limited in assessing highly local processes like the peer/neighbourhood effect. Therefore, 

although the peer effect comprises a large portion of literature, it is omitted from this 

dissertation.  

 

3.4. Spatial autocorrelation analysis  

Moran’s I spatial autocorrelation analysis is deployed to explore the degree of spatial 

clustering or dispersion within the dependent and independent 2021 datasets. By 

comparing values of BEV and PV adoption to neighbouring local authorities this analysis 

determines whether spatial diffusion patterns are random or clustered (Lan et al., 2020; 

Cliff and Ord, 1973; Getis, 2009). Global spatial autocorrelation analyses assess trends 

across all of England, assimilating local authority data. Conversely, local spatial 

autocorrelation focuses individual local authorities and their neighbouring districts (Moran, 
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1948; Rogerson, 2010; Morton et al., 2018). The Moran’s I index falls between -1 and 1, 

with a value of 0 suggesting no spatial correlation present, a positive value suggesting a 

tendency towards clustering, and a negative value indicating an inclination towards 

dispersion/random spatial distribution (Lan et al., 2020; Morton et al., 2018; Anselin, 1995). 

Global Moran’s I was used to independently quantify the extent of spatial association of all 

variables with neighbouring LADs (table 4). Moran’s I was calculated in ArcGIS, with a 

distance band set at 100,000m, an appropriate scale to account for neighbouring local 

authorities. The p-values (significance level) and z-scores (degree of variation from 

absolute spatial randomness) were 

used to evaluate the significance of 

the spatial autocorrelation results 

(Moran’s Index). Local indicators of 

spatial association (LISA), including 

local Moran’s I, were also used in 

this dissertation to decompose the 

global statistics detailed in table 4. 

Local Moran’s I analysis has been 

deployed to identify local patterns of 

PV and BEV spatial autocorrelation 

(Anselin, 1995), with results 

presented in figure 5 alongside an 

overlay of the major towns and cities 

in England as of 2015 (ONS, 

2022c). For the local characteristics 

which displayed the strongest 

relationship with BEV or PV 

adoption, a final Local Moran’s I 

analysis was conducted to explore 

the spatial organisation of these 

characteristics relative to BEV and 

PV geographic diffusion patterns. 

Local Characteristic Moran’s 

Index 

z-score 

PV Adoption  0.053** 4.706 

BEV Adoption  0.426** 33.948 

Age  0.193** 15.357 

Education Level - Qual 

None  

0.279** 22.374 

Education Level – Qual 

1 & 2  

0.274** 22.036 

Education Level – Qual 
3 & Apprenticeship  

0.524** 41.950 

Education Level – Qual 

4  

0.408** 32.700 

Household Size  0.066** 5.352 

Household Income  0.198** 16.270 

House Value  0.700** 56.373 

Renter Occupied  0.169** 13.747 

Population Density  0.063** 5.318 

Dwelling Type – House  0.274** 21.981 

Dwelling Type – Duplex  0.438** 35.149 

Dwelling Type – Unit  0.509** 41.092 

Charging Points 0.207** 18.131 

Gas Heating  0.087** 7.224 

Cars per Household 0.137** 11.347 

Car driver or car 
passenger to work  

0.564** 45.145 

** p value < 0.01. 
* p value < 0.05. 
 

Table 4. Global Moran’s I statistics for all 
variables. 
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Figure 5. Local spatial autocorrelation analysis (Local Moran’s I) of battery electric vehicle (a) and solar panel (b) adoption per 

1000 people for the local authorities of England in 2021. An overlay of English major towns and cities are marked in black.

a b 
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3.5. Linear regression analysis  

To investigate whether the local characteristics (the independent variables) are useful in 

explaining residential BEV and PV adoption for the 2021 datasets (van der Kam et al., 

2018), a series of global linear regression models have been conducted. Due to the high 

degree of interaction between the independent variables, a multicollinearity assessment 

was conducted (table 5). The variance of inflation factor (VIF) index was computed in 

RStudio, with VIF values less than 2.5 indicating no correlation, between 2.5 and 10 

suggesting moderate correlation, and over 10 indicating severe correlation (Morton et al., 

2018). The local characteristics which are split into hierarchical categories (education 

status and dwelling type), expectedly experience a high degree of collinearity so only one 

of these variables was selected for the final multicollinearity test (the others hatched in 

table 5). A threshold of VIF 10 is enforced, with higher VIF values omitted from regression 

analysis (Morton et al., 2018; Lan et al., 2020; Field, 2009). Aside from ‘car or driver 

passenger to work’ the level of collinearity 

is low among independent variables, so 

despite exceeding the VIF threshold, the 

regression analysis proceeded with all 

variables outlined in the left-hand column 

of table 5.  

 

As the regression models are linear, a 

series of Spearman’s Rank correlation 

analyses have also been conducted to 

investigate fluctuating dynamics between 

independent and dependent variables 

which are not detected in the linear 

regression analysis (Sierzchula et al., 

2014). Table 6 presents the results of the 

Spearman’s Rank correlation analysis 

computed in RStudio, quantifying the 

correlation coefficient and statistical 

significance of the relationships between 

all independent and dependent variables 

across English local authorities for the 

2021 datasets.  

Local Characteristic VIF Index 

Age   2.465 

Education Level - Qual 

None  

 

Education Level – Qual 1 

& 2  

 

Education Level – Qual 3 

& Apprenticeship  

 

Education Level – Qual 4   6.858    

Household Size  1.088 

Household Income  1.458   

House Value  5.454  

Renter Occupied  2.427 

Population Density  1.093  

Dwelling Type – House  
 

Dwelling Type – Duplex  
 

Dwelling Type – Unit  7.811   

Charging Points 2.032 

Gas Heating   1.150  

Cars per Household  1.587  

Car driver or car 
passenger to work  

15.997  

 

Table 5. Variance of inflation factor 
(VIF) results for the independent 
variables. 
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To distinguish between BEVs and PVs, two linear regressions were performed, one with 

the number of BEVs per 1000 people for each English local authority, and the other with 

the number of PVs per 1000 people for each English local authority (respective dependent 

variables). Within these two models, a simple linear regression for each independent 

variable was conducted, with their units and data source outlined in figure 4. A simple 

linear regression was also performed between BEV and PV adoption, exploring whether 

investment in one ETT stimulates adoption of another, a phenomenon observed by Collier 

et al. (2023). The simple linear regression calculates a beta (β) coefficient for each 

independent variable to represent the degree to which BEV/PV adoption will change with a 

change in the independent variable, quantifying the predictive power of each local 

characteristic over ETT adoption. The respective standard error for each beta coefficient 

captures the accuracy of the regression result, with greater standard errors identifying a 

greater spread of data. The beta coefficients are all relative, enabling direct comparison of 

BEV and PVs for the same variable but not between variables due to differences in units.   

Subsequently, a multiple linear regression analysis for each local characteristic subgroup - 

social, economic, built environment and lifestyle – was conducted to gauge the relative 

importance of thematic control over BEV and PV adoption. The adjusted r2, lying between 

0 and 1, is calculated for each group to quantify the explanatory power of each 

independent variable, with the f-value recording the extent of variance. Adjusted r2, 

opposed to regular r2, accounts for differences in the number of independent variables 

enabling fair comparison between each group. Finally, a multiple linear regression 

encompassing all the variables was conducted for both BEV and PV adoption to determine 

which is most heavily influenced by the local characteristics specified in this analysis. It is 

important to note that although these variables may appear to exert control over the 

adoption of BEVs and PVs, they should not be interpreted as the actual determinants of 

adoption, instead results should be interpreted as a proxy for motivators of adoption (van 

der Kam et al., 2018). However, this regression analysis provides useful insight into the 

relative importance of these local characteristics, facilitating comparison between different 

types of ETT determinants and providing a unique comparison between BEV and PV 

diffusion.  

Figure 6 lays out the methods, illustrating the role each analysis technique plays in 

determining the spatial patterns of BEV and PV adoption and in constructing the distinct 

BEV and PV adopter profiles. These feed into each other to explain the observed patterns 

of BEV and PV diffusion in England.
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  PV AGE ED0 ED1 ED3 ED4 SIZ INC VAL REN DEN HOU DUP UNI CHA GAS CAR DRI EV 

PV 1                                     

AGE 0.680**  1                                   

ED0 0.0612 -0.052 1                                 

ED1 0.362** 0.357 
** 

0.571** 1                               

ED3 0.485** 0.371**  0.254** 0.345** 1                             

ED4 -0.308 
** 

-0.196 
** 

-0.860 
** 

-0.819 
** 

-0.535 
**  

1                           

SIZ 0.205** 0.155** -0.119* 0.080 0.070 0.0235 1                         

INC -0.491 
**  

-0.324 
**  

-0.521 
** 

-0.397 
**  

-0.506 
** 

0.600** -0.037 1                       

VAL -0.355 
**  

-0.134* -0.676 
**  

-0.375 
** 

-0.612 
** 

0.725** 0.110 0.641 
** 

1                     

REN -0.329 
**  

-0.645 
**   

0.313** -0.131* -0.192 
** 

-0.082 -0.147** 0.016 -0.145* 1                   

DEN 0.053 0.138* -0.038  0.047 0.058 -0.022 0.021 0.000 -0.033 -0.131* 1                 

HOU 0.730** 0.781**  -0.175 
** 

0.311** 0.284** -0.094 0.297** -0.167 
** 

-0.026  -0.657 
** 

0.138* 1               

DUP -0.085 -0.270 
**  

0.540** 0.223**  0.324** -0.511 
** 

-0.197** -0.325 
** 

-0.670 
** 

0.372** 0.053   -
0.417** 

1             

UNI -0.689 
** 

-0.618 
** 

-0.235 
** 

-0.395 
** 

-0.516 
**  

0.439** -0.146*  0.384** 0.524** 0.364** -0.121* -0.704 
** 

-0.187 
** 

1           

CHA -0.075  -0.159 
**  

-0.370 
** 

-0.481 
** 

-0.207 
** 

0.475** 0.069 0.195** 0.326** 0.150** 0.001 -0.121* -0.266 
** 

0.217** 1         

GAS 0.158** 0.148**  0.075  0.210** 0.224** -0.199 -0.057 -0.174 
** 

-0.166 
** 

-0.001 0.369** 0.055 0.180** -0.087 -0.038 1       

CAR 0.381** 0.468** -0.329 
** 

0.222** 0.0157 0.101** 0.2486** 0.163** 0.225** -0.514 
** 

0.215** 0.719** -0.268 
** 

-0.423 
** 

-0.042 0.081 1     
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DRI 0.540** 0.446** 0.652** 0.670** 0.585** -0.819 
** 

0.083 -0.589 
** 

-0.754 
** 

-0.107 0.065 0.404** 0.389** -0.754 
** 

-0.387 
** 

0.152** 0.123* 1   

EV -0.033 0.095 -0.724 
** 

-0.330 
** 

-0.386 
**  

0.674** 0.127*  0.509** 0.688** -0.281 
** 

0.088 0.274** -0.531 
** 
  

0.150** 0.304** -0.077 0.608** -
0.508 
** 

1 

** p value < 0.01. 
* p value < 0.05. 
 

Table 6. Spearman’s Rank correlation analysis between all of the independent and dependent variables across English local 

authorities in 2021. The codes for each variable are outlined in figure 4.  
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Figure 6. Diagram of methods.  
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4. Results 

4.1. BEV and PV diffusion  

The current distribution of domestic BEVs and PVs are spatially distinct in England. Figure 

2 captures their differences, appearing geographically inverted. This is particularly evident 

around London and the South-East which generally enclose the largest proportion of BEVs 

but the smallest proportion of PVs in England, marked in figure 2 with light and dark 

shading respectively. Figure 4 confirms these observed distinct patterns of adoption. BEV 

diffusion was highest in the South-East and South-West (~10 BEVs per 1000 residents) 

whilst PVs were conversely most abundant in the South-West, North-East and East 

regions of England (~20 – 17 PVs per 1000 residents) in 2021. Although the South-West is 

a large adopter of both BEVs and PVs, these ETTs are not installed in synergy, with 

annual cumulative PV adoption rates evidently almost double BEV registrations. BEV 

adoption appears more sporadic than PVs. Figure 2 illustrates a more scattered spatial 

pattern of BEV registrations in local authorities, contrasting to the more smooth/uniform 

distribution of PVs.   

This dissertation considers ETT growth trends, with the consistently higher accumulation 

of PV instalments in England across the period (marked by lighter shading in figure 2), a 

defining characteristic of relative PV adoption. By 2021 the domestic PV stock in England 

had cumulatively reached 712,512 units, compared to the less abundant BEV fleet of 

368,524 units (figure 4). However, as aforementioned in Section 1.1 the PV market is more 

mature than BEVs; at the start of the period the PV stock (122,000 installations) was 

already larger than the BEV fleet of 2,425 registrations. Although less abundant, BEV 

adoption grew at a faster rate, experiencing in a 150,011% increase in England compared 

to PV which only grew by 484% throughout the decade. Figure 4 presents distinct patterns 

of PV and BEV adoption through time. The BEV registration rate consistently accelerated, 

with adoption doubling annually in 2018, 2019, 2020 and 2021. Conversely, PV installation 

growth appears slightly less regular, with some adoption troughs and peaks, beginning to 

plateau after 2016. Regionally, London consistently enclosed the lowest PV stock, 

containing only 2.51 PVs per 1000 people in 2021. Conversely, the South-West, North-

East and East-Midlands, all contained over 17 PVs per 1000 people in 2021. The South-

West not only experienced the greatest increase in PV adoption throughout the period, but 

it also unfailingly maintained the largest PV stock. Figure 9 illustrates the regional variation 

in PV growth diagrammatically throughout the period, with differences accelerating, 

particularly noticeable when comparing London with the South-West. The local authorities 

with the highest PV adoption levels in 2021 are presented in figure 7 dominated by the 
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Figure 7. English local authorities with the greatest number of domestic solar panel 
installations per 1000 people in 2021, colour coded by region.  
 

South-West and East as expected, with Mid Devon marginally containing the highest 

levels of adoption – 45 PVs per 1000 people.  

In contrast, BEV adoption, lagging behind PV adoption, experienced more geographic 

turbulence in changing regional patterns of adoption, presented in figure 10. Although 

London started with the highest proportion of BEVs, 0.12 BEVs per 1000 people – 10 

times larger than all other regions – the initial high adoption rate was not maintained. By 

2014, London was overtaken by the South-East, South-West, West-Midlands and 

Yorkshire and the Humber. As a slight outlier, Stockport marginally enclosed the most (83) 

BEVs per 1000 people in 2021, highlighting the more sporadic and scattered distribution of 

BEVs. However, Stockport was closely followed by an expected flurry of local authorities 

from the South-West and South-East, illustrated in figure 8. The South-East and South-

West experienced the greatest change in BEV adoption, a 10-fold growth in their BEV 

stock per 1000 people, with these regions ultimately enclosing the largest BEV stock. In 

contrast, the North-East experienced the least change, only doubling their BEV fleet in the 

same period, widening these uneven spatial diffusion patterns.  
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Figure 8. English local authorities with the greatest number of domestic battery 
electric car registrations per 1000 people in 2021, colour coded by region. 
 
4.2. Spatial Autocorrelation  

The local Moran’s I test identified significant regions of BEV and PV clustering and 

dispersion, statistically confirming the empirical observations discussed above. The global 

Moran’s I value of 0.426 for PVs compared to BEVs of 0.053 (table 4), suggests PVs are 

more prone to clustering whilst BEV adoption is more dispersed, statistically confirming 

that BEV distribution is more sporadic. Regions marked in dark blue in figure 5 represent 

significant clusters of low levels of BEV/PV adoption in 2021, displaying cold spots or 

dispersed adoption pockets. For BEV adoption, the cold spots are located in the North-

East and North-West, and to a lesser extent in some local authorities west of London. 

 

For PVs, the areas of dispersed adoption are concentrated in and around London and the 

North-West, correlating with some major towns and cities like London, Manchester, 

Liverpool and Bristol. Although not universal, PV diffusion appears to be inversely 

correlated with dense urban areas. This finding is most apparent places like Cambridge, 

Hull and Norwich. These cities are identified as significant cold spots of PV adoption but 

are paradoxically enclosed within regions of high PV clustering. In contrast, the diffusion of
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Figure 9. Choropleth maps of residential solar panel installations per 1000 people across English local authorities in (a) 2011, 
(b) 2013, (c) 2015, (d), 2017, (e) 2019, and (f) 2021. 

a 
 

f e d 

c b a 
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Figure 10. Choropleth maps of domestic battery electric vehicle registrations per 1000 people across English local authorities 
in (a) 2011, (b) 2013, (c) 2015, (d), 2017, (e) 2019, and (f) 2021.  

a 

f e d 

c b 
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BEVs does not appear to relate to the distribution of major towns and cities, although like 

Morton et al. (2018), this dissertation also identifies cold spots in some of the large cities in 

northern England like Manchester and Liverpool.  

Regions marked in dark red in figure 5 represent clusters of significant high levels of BEV 

and PV adoption. PV hotspots are abundant in the North-East, East and South-West, 

particularly near the coast. Comparatively, there are fewer regions of BEV hot spots. 

These are generally configured west of London in the South-East and West-Midlands. 

BEV and PV adoption appears almost inverse, with the hot spots of PV adoption often 

corresponding to the cold spots of BEV adoption vice versa, especially around London and 

in the North-East.  

The results of the local Moran’s I analysis conducted for chosen local characteristics, 

designed to enhance understanding on the determinants of PV and BEV adoption is 

presented in figure 11. Although all variables displayed evidence of clustering, exemplified 

by the unanimous positive Global Moran’s I result presented in table 4, nine variables were 

selected due to their strong correlation and regression with either BEVs (cars per 

household, no education, high education, median house value and drive to work) or PVs 

adoption (age, dwelling type (house and unit), and income). By comparing the PV/BEV 

LISA results (figure 5) with these independent variables (figure 12), this dissertation can 

determine whether these local characteristics universally control BEV/PV diffusion or 

whether their influence is regional. Each of the maps in figure 11 is distinct, with the 

influence of different local characteristics highly regional.  

 

4.3. Regression Analysis  

A Spearman’s Rank correlation analysis was conducted to investigate the strength of the 

relationship between the dependent and independent variables (table 6). Like Morton et al. 

(2018), this dissertation considers correlations less than 0.2 as insignificant, determines 

weak correlations as those between 0.2 and 0.4, moderate correlations between 0.4 and 

0.6 and stronger correlations greater than 0.6. The majority of correlations exceeded 0.2 

and almost a third surpassed 0.4, with an abundance of significant moderate and strong 

correlations detected from the Spearman’s Rank analysis. This indicates a substantial 

degree of interaction between all the variables. The strongest correlation was identified 

between education and drive to work (coefficient = -0.819). Significant positive strong 

correlations were identified between BEV adoption and level 4 education qualifications 

(0.674), house value (0.688), and cars per household (0.608). The strongest relationship 

for BEV adoption was the significant negative correlation detected with median age 
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Figure 11. Local spatial autocorrelation analysis (Local Moran’s I) of selected local characteristics: (a) dwelling type: house, (b) 

cars per household, (c) car drive to work, (d) house value, (e) household income, (f) education level 4, (g) dwelling type: unit, (h) 

age, and (i) no qualifications for the local authorities in England in 2021. 

g i h 
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(-0.724). Conversely, significant strong positive correlations were identified between PV 

adoption and median age (0.680) and living in a house (0.730), complementing the 

significant strong negative correlation with living in a unit (-0.689).  

The regression analysis, presented in table 7, considers the effect of social, economic, 

built environment and lifestyle variables over BEV and PV adoption. The four exemplar 

regression plots for one of the social, economic, built environment and lifestyle variables 

presented in figure 11, illustrate the extent to which the dependent variable changes with 

the independent variable. The high spread of results, particularly evident in figure 12a, 

highlights variance within datasets, stressing the importance of using local data analysis 

techniques, like local Moran’s I, to decompose these global statistical tests. 

The results of both the correlation and regression analysis enabled construction of an 

adopter profile for both BEV and PV adoption. The identification of a moderate/strong 

correlation and a significant complementary regression for local characteristics indicates a 

higher degree of predictive power over ETT adoption. Some convergence was identified 

between PV and BEV adoption, for example rented accommodation had a negative effect 

on adoption of both. However, this study predominantly observes divergence in the 

determinants of BEV and PV adoption, with most variables exerting a contradictory effect 

over BEV and PV adoption. For example, dwelling in a house stimulated PV adoption (β = 

1.064), but discouraged BEV adoption (β = -0.027), although to a slightly lower magnitude.   

The independent variables which produce strong positive correlations and significant beta 

coefficients of regression for PVs were: dwelling in houses (β = 1.064) and age (β = 

0.379). A strong significant negative effect of living in a unit (β = -1.140) was also 

identified. House value (β = -7.023) and income (β = -0.313) have been identified as 

important negative predictors of PV adoption, whilst education status (β = 0.183/0.178), 

commute to work (β = 0.888) exert a less strong, but still significant, positive influence over 

PV adoption. Gas heating and population density are unanimously identified as poor 

determinants of BEV and PV adoption due to their weak and often insignificant conflicting 

regression and correlation results (tables 6 and 7). Renting a property is the one significant 

common determinant of both BEV and PV adoption, quantified by the negative beta and 

correlation coefficients (BEV: β = -0.021; PV: β = -0.253), with this study detecting tenancy 

as a notable barrier to adoption. Adoption of one ETT does not appear to increase the 

likelihood of adopting another, with the beta coefficient for BEV and PV adoption both 

showing insignificant low negative values (-0.096 and -0.058).  

The multiple linear regression consistently calculates higher r2 values for PVs than BEVs, 

suggesting the variables selected in this study are more appropriate for predicting PV 
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adoption than BEV adoption. The built environment variables produce the highest r2 value 

for PVs (0.504), whilst lifestyle variables produce the lowest r2 value of 0.202. Economic 

variables are the greatest predictor of BEV adoption (r2 = 0.031) but this is relatively 

weaker than for PVs, exemplified by the 10-fold larger r2 (0.290). The cumulative adjusted 

r2 value, calculated when assimilating the independent variables, is greater for PV 

adoption (r2 = 0.642) than BEV adoption (r2 = 0.034), suggesting that the local 

characteristics in this study are better determinants of PV adoption.   
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Variable  PV  BEV 

  Beta Coefficient Std. Error R2 

(adjusted) 
F-value Beta 

Coefficient 
Std. 

Error 
R2 

(adjusted) 
F-value  

SOCIAL     0.438 40.810**       0.009 3.71* 

Median Age 0.379**  0.028     -0.049  0.027     

Education  
1. None 

2. Level 1 & 2 

3. Level 3 & Apprenticeship. 

4. Level 4 

 
0.040 
0.183** 

0.178** 

-0.394** 

 
0.028 
0.024 

0.019 

0.058 

     
-0.083**  
-0.037** 

-0.056** 

0.173**  

 
0.021 
0.020   

0.017 

0.047 

    

Household Size   0.007**   0.003      -0.003  0.002     

ECONOMIC     0.290 42.551**      0.031  4.354** 

Income  -0.313**  0.038     0.068*   0.032     

House value  -7.023**  0.929     2.547** 0.772     

Renter occupied dwellings   -0.253**  0.040     -0.021  0.033     

BUILT ENVIRONMENT      0.504 63.362**      0.015  1.908**  

Pop Dens  -0.006  0.018     0.007 0.014     

Dwelling type  
- House  

 
1.064**  

0.067  

-1.140** 

 
0.066 

0.084 

0.090 

     

-0.027 

-0.128*  

0.153  

 

0.070 

0.064 

0.086 

    



38 
 

- Duplex 

- Unit  

Charging points  -0.011**  0.003     0.008** 0.003     

LIFESTYLE         0.202  78.421**     0.001 0.633 

Gas Heating 0.196** 0.069     0.082  0.054     

Cars per household  0.011** 0.003     0.024** 0.001     

Car driver or passenger to 
work   

0.888*  0.080       -0.189*  0.073     

BEV adoption  -0.096 0.074             

PV adoption         -0.058 0.044     

R2 (adjusted)     0.642       0.034   

F Value       30.010**       11.920** 

** p-value < 0.01 
* p-value < 0.05 
Table 7. Regression model results with domestic battery electric vehicle registrations and residential solar panel installations 
per 1000 people as the dependent variable. The collective multiple regressions results are marked in bold.
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Figure 12. Regression plots from each of the categories with the independent 
variables marked on the x-axis and dependent variable marked on the y-axis: (a) 
lifestyle: cars per household and BEV, (b) built environment: houses and PV, (c) 
economic: house value and PV, and (d) social: age and PV.
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5. Discussion 

5.1. RQ 1. 

The rapid transition of PVs and BEVs from the initial ‘innovators’, to early adopters into 

aspirational majority markets (Rogers, 2003) is fundamental for meeting the UK 

Government’s climate obligations (Balcombe et al., 2014). Whilst accelerating patterns of 

BEV and PV adoption observed in figure 4 is warranted given the 85% decrease in the 

cost of both EV batteries and PV units (IEA, 2020; IRENA, 2021), literature emphasises 

the complex network of other factors which are also responsible for determining the 

trajectories and spatial distribution of ETT adoption.  

Growth in residential PV adoption irregularly slowed since 2011, seemingly plateauing 

from 2019 to 2021 (figure 4b). The peak in PV adoption in 2019, increasing on average in 

England by 93.89 PVs per 1000 people, coincides with the announced revocation of the 

FiT which literature suggested sparked a rush on PV instalments (Castenda et al., 2020)., 

highlighting the role incentives play in determining PV adoption in England. The 

subsequent decline in cumulative PV adoption in 2020 by -50.58 units per 1000 people 

aligns with revocation of FiT and the outbreak of Covid-19, possibly representing the dip in 

PV adoption due to government restrictions imposed during the pandemic (Lempriere, 

2020). With the PV markets plateauing at the end of the study period, the trajectory of 

installation appears uncertain. However recent studies identify a successful restimulation 

of domestic PV markets, with record breaking growth in the PV industry, doubling small-

scale installations in 2022 (Simkins, 2023). 

Conversely, BEV adoption accelerated year-on-year from 2011 to 2021, growing by 

150,011% over the period, illustrated in figure 4a. Given that the rapid development of the 

BEV market was undeterred by weakening financial support from government incentives, 

contrasting to PV adoption (Section 5.1), this potentially places BEVs on a trajectory to 

catch up with the more mature, larger PV markets in England. Like PVs, BEV markets 

have also continued to grow, with BEV stocks increasing by 20% in 2022 (Edwards, 2023). 

The fast-paced, dynamic nature of ETT markets reinforces the importance of this study 

and of further research in understanding the geographies of the green transition.  

 

PV and BEV adoption is also regionally distinct, with the possible explanations for these 

spatial differences discussed later in Section 5. Whilst BEV adoption rates were more 

regular through time on a national scale, geographically BEV distribution was more 

sporadic than PVs (Section 4). Like Morton et al. (2018), this dissertation suggests the 

influence of local characteristics change as ETT markets evolve; attributing the regional 
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variability in BEV adoption to changing determinants of adoption as markets mature. 

Understanding these dynamic determinants of adoption through time and space is useful 

in shaping effective policies to stimulate the necessary timely and just transition of BEVs 

and PVs to majority markets across all of England (Lan et al., 2020).  

 

5.2. RQ 2. 

The local Moran’s analysis (figure 11) emphasises the geographical misfit between BEVs 

and PVs, with their respective regions of clustering appearing almost inverse. Van der 

Kam et al. (2018) observed a similar misfit in the Netherlands, stressing the negative 

implications for the smart integration of energy and mobility systems. PVs predominantly 

cluster in the South-West, East, East-Midlands, Yorkshire and the Humber and the North-

East particularly in the coastal regions, generally distant from major towns and cities. This 

seriously contrasts to the distribution of BEVs, which are located in closer proximity to 

urban areas, especially in and around London, the South-East and West-Midlands. 

Literature commonly recognises the distribution of EVs clustered in more densely 

populated urban areas, with range anxieties less prevalent due to shorter driving distances 

and higher density charging infrastructure (e.g., Sierzchula et al., 2014). Conversely 

literature frequently detects PVs to cluster in rural areas with greater space easing 

installations and generating more electricity potential (e.g., van der Kam et al., 2018; 

Kwan, 2012). Although this study detects no significant global effect of population density 

in the correlation and regression analysis in this study, Section 4.2. highlights specific 

regions where BEV and PV diffusion follows the expected inverse relationship with urban 

areas. The disparity between the global regression and local spatial autocorrelation 

analyses highlights the importance of conducting multiple statistical tests to decompose 

global statistics. The localised relationship with urbanism either suggests that the urban 

divide between PVs and BEVs is less severe in England than in literature, or it could infer 

that the divide will widen and solidify once full market maturity is reached. This dissertation 

therefore advocates regular monitoring of ETT diffusion to understand pathways of 

adoption. 

 

Additionally, like van der Kam et al. (2018), this dissertation also finds a similar temporal 

lag of BEVs behind PVs, contributing to their misaligned diffusion patterns. As adoption 

rates increased throughout the period, this study also suggests the relative spatial 

distribution of BEVs and PVs seem to become more pronounced (figures 9 and 10). The 

current geographical and temporal misfit of BEV and PV adoption in England has serious 
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implications for the smart energy transition (van der Kam et al., 2018), bringing the viability 

of the smart energy grid into question for the near future. Although the government are 

focused on developing smart energy technology, notably V2G systems, arguably the 

implementation of this infrastructure is limited not by innovation, but instead by the 

conflicting geographies of the green transition. Unless the distinct spatial variance in BEVs 

and PVs is addressed, the integration of local energy and mobility systems is unfeasible in 

the near future. This dissertation therefore advocates a re-evaluation of ETT policy, 

arguing more attention should be paid to the local diffusion patterns of BEVs and PVs, 

working to stimulate a uniform clean energy transition.  

 

5.3. RQ 3. 

The results of the statistical analyses are helpful in constructing BEV and PV adopter 

profiles, identifying the characteristics of adopters and their respective barriers and 

motivators for ETT adoption which help determine their distinct spatial diffusion patterns. 

However, with this dissertation observing BEV and PV at a local authority scale, 

interpretation of results must be careful of ‘ecological fallacy’ (Robinson, 1950), whereby 

relationships identified on a smaller scale are applied to wider groups. The effect of local 

characteristics quantified in the regression analysis are subject to considerable 

uncertainty, ranging from 0.001 to 0.929, often similar values to the beta coefficients 

themselves. The complex, diverse range of potential factors determining BEV and PV 

adoption contributes to this uncertainty, emphasising the speculative role this dissertation 

holds when discussing determinants of adoption. 

 

This study observes that PV adopters typically live in houses rather than units, in bigger 

households with a lower income and lower house value. They are typically older in age, 

have obtained a mid-tier education level, own more cars and are a driver/passenger to 

work. Generally, this aligns well with literature, seemingly embodying the ‘early adopter’ 

profile identified by Rogers (2003). Although, studies typically find PV adoption to be 

motivated by the highest education levels, like Balta-Ozkan et al. (2021) this dissertation 

observes that vocational qualifications (Level 2 and 3 shown in Section 4.3) are more likely 

to stimulate PV installation due to greater knowledge on the practical construction and 

instalment process. Three themes of PV adoption have been identified in this dissertation, 

the importance of house/roof space, the importance of accumulated wealth rather than 

absolute income and the positive influence of high household energy consumption.  
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The strong positive effect of living in a house and negative influence of living in a unit, 

identified in Section 4.3, has been previously identified in literature (e.g., Van der Kam et 

al., 2018). It is generally acknowledged that households with their own roof space are 

more likely to adopt PVs (Briguglio and Formosa, 2017). The importance of roof space is 

logical, the larger the PV, the more electricity generated thus energy bills offset, so the 

more quickly installation costs are ‘paid back’ (Araújo et al., 2019). Likewise, as multiple 

units compose one building, residents who dwell in units are therefore less likely to have 

any access to private roof space, leaving these residents unable to install PVs. The cluster 

of units and significant absence of houses concentrated in London, depicted in figure 11a 

and 11g, could therefore explain the consistent significant PV cold spot in London (figure 

5) with PV installation less feasible in this dense urban area.   

 

The influence of economic factors, including household income and property value, over 

PV adoption is heavily contested in literature (table 3). Although it might be expected that 

the high costs associated with PV installation present a fiscal serious barrier to adoption, 

this dissertation observes house value and household income to negatively influence PV 

adoption. This study argues, in line with previous literature, that high income and house 

value do not disincentivise adoption, but instead suggests that accumulated wealth is 

relatively more important in motivating PV adoption (e.g., Balta-Ozkan et al., 2021; Lan et 

al., 2020). As PV installation is a long-term capital investment, households need to be in a 

strong financial position to invest, highlighting the importance of a disposable income 

(Balta-Ozkan et al., 2021). Although Balta-Ozkan et al. (2021) suggest a positive effect of 

renting and PV adoption due to the evasion of mortgages, the strong negative influence of 

renting a property outlined in Section 4.3, generally aligns well with observations from 

literature (e.g., Balcombe et al., 2013; Davidson et al., 2014). This also complements the 

observed importance of accumulated wealth, with tenants found to have a lower 

disposable income than homeowners (ONS, 2023b), possibly explaining the lower 

adoption rates in rented accommodation. The same study observed a similar phenomenon 

for middle aged people, suggesting they have the highest disposable income of all age 

groups. The positive relationship between PV adoption and age indicates that households 

older than the average, around 41.94 for England (table 2), essentially middle-aged 

households, are more likely to install PVs. These findings both aid the conclusion that 

higher accumulated wealth is an important motivator of PV adoption by overcoming the 

serious fiscal barrier to adoption, rather than gross household income and house value.  
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Although not necessarily strong, Section 4.3. observes a positive relationship between 

household size, living in a house, gas heating, owning more cars and commuting to work. 

These variables are associated with higher energy consumption and subsequently higher 

electricity costs (Balta-Ozkan et al., 2021). Given that PVs facilitate savings on energy bills 

(Capstick, 2023), it is possible that the positive effect of these variables suggest that 

higher energy consumption acts as a motivator for PV installation. As this dissertation has 

already identified that these households are not the highest earners and do not live in the 

highest value dwellings, there might be even more of a drive for them to save on energy 

bills (Araujo et al., 2019).  

 

The BEV adopter profile differs. Adopters appear to live in smaller households with a 

higher income and house value, nearer more EV charging points. These early adopters 

are well educated, property owners with more cars, but do not typically travel in a car to 

work. This adopter profile generally aligns well with literature (table 3). Three themes of 

BEV adoption have been identified from this study, the importance of higher economic 

status, the presence of range anxieties and the identification of a more diverse group of 

adopters. 

 

Firstly, Section 4.3. shows economic variables to hold the greatest significance for BEV 

adoption, mirroring the findings in Araujo et al.’s (2019) study. The significant positive 

relationship between income and house value over BEV adoption detected, aligning with 

literature (e.g., Kwan, 2012), suggests economic variables are useful predictors of BEV 

adoption. However, given the consistent removal of most financial aid from the government 

in reducing costs associated with BEV adoption, it is unsurprising that higher income 

motivated adoption. This starkly contrasts to PV adoption which instead emphasises the 

importance of accumulated wealth. Income and house value have a stronger effect over 

determining PV adoption (-0.313 and -7.023 respectively), with the beta coefficients of the 

regression at least an order of magnitude greater for PVs than BEVs (0.068 and 2.547), 

suggesting that accumulated wealth is a more important characteristic for PV adoption 

than high income/house value is for BEV adoption. The distinct unique determinants of PV 

and BEV adoption likely explains their spatially inverse patterns of diffusion.  

 

Additionally, the negative relationship between driving to work, and the positive effect of 

cars per household and charge points (tables 6 and 7) suggests evidence of concerns 

over range anxiety in England – a potential barrier to BEV adoption (Plotz et al., 2014; 
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Skippon and Garwood, 2011). The positive effect of owning more cars could be due to 

BEVs being more popular as a second car, as found in previous studies (Skippon and 

Garwood, 2011; van Haaren, 2012; Haugneland and Kvisle, 2015). Literature implies that 

BEVs are therefore designed for local driving rather than for long commutes due to 

concerns over the battery range (Nayum et al., 2016) hence the negative influence of 

commuting observed in this dissertation. The positive effect of charging infrastructure 

complements the detection of range anxieties as adopters appear more confident to make 

the investment in BEVs knowing they have greater accessibility to charging networks. 

However, literature identifies a weaker relationship with charging infrastructure than 

observed in previous literature. When comparing the correlation coefficients with Morton et 

al.’s (2018) 2015 study in England they appear similar to this dissertation (0.304 and 0.252 

respectively). However, given that this study recorded charge points per 1000 people 

rather than per person, the vastly different scale suggests a weaker correlation between 

charge points and BEV adoption in 2021 than in 2015. Like Plotz et al. (2014), this 

dissertation argues that the seemingly lowering dependence on charging infrastructure 

may be due to the accelerating growth of home charging. The Energy Savings Trust 

(2019) finds 80% of EV charging to take place in the home, a phenomenon observed as 

BEVs move into majority markets. Again, highlighting the turbulence associated with ETT 

markets. 

 

Finally, this study identifies a more diverse group of BEV adopters than PV adopters with 

the regression and spatial autocorrelation models explaining less of the variance in BEV 

adoption, aligning with the findings from Araujo et al.’s (2019) study in New York. The 

higher combined r2 value for PVs presented in Section 4.3. indicates that the independent 

variables offer more predictive power over the adoption of PVs than BEVs. However, the r2 

for PVs is more uncertain, quantified by the higher significant f-value of 30.010, reinforcing 

the limits of this study in defining the absolute determinants of ETT adoption. Van der Kam 

et al. (2018) observes a very similar phenomenon in the Netherlands, calculating an r2 of 

0.452 and 0.053 for PV and BEV adoption respectively. Like this study, they attribute the 

lower r2 value for BEVs to the adopter group being more diverse, with adoption determined 

by a network of wide-ranging variables beyond the scope of their study. Section 4 identifies 

an increasingly spatially uneven BEV distribution, with diffusion becoming more sporadic. 

This dissertation calculates r2 values of 0.642 and 0.034 for PV and BEV adoption, 

accounting for ~64% and 3.4% of the variance in spatial distribution respectively. This 

suggests that a broader or different range of variables determine patterns of BEV adoption 
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than the local characteristics identified in this study, explaining the geographically sporadic 

pattern of BEV adoption identified in Section 4.  

Given that the independent variables in this study successfully account for the majority of 

variance in PV instalment, BEV and PV adoption are clearly influenced by very different 

factors. The distinct adopter profiles for these two ETTs, helps explain inverse patterns of 

BEV and PV adoption observed figure 2. 

 

Although the distribution of PVs is well explained by the local characteristics, 36% of 

variance is unexplained by this study. Section 5.1. highlights the important predictive 

power of incentives over PV adoption in England. Additionally, literature emphasises the 

significance of differing spatial solar irradiance levels in PV adoption. Balta-Ozkan et al. 

(2021) find a strong positive effect of high solar irradiance levels in the South-West over 

PV adoption due to the high electricity generation potential. With this study also 

consistently identifying the highest concentration and growth rate of PVs in the South-West 

throughout the period (figure 4), this could be attributed to higher solar irradiance levels.  

 

Local characteristics have been identified as significant determinants of BEV, but 

particularly PV, adoption. Similar to Lan et al. (2020), this dissertation therefore also 

advocates a reconsideration of ETT incentives, suggesting that policy making should 

become more localised to account for these diverse local characteristics, enabling the 

transition of both BEV and PV adoption from early adopter to majority markets (Rogers, 

2003). Furthermore, given the divergence in determinants of BEV and PV adoption and 

subsequent inverse spatial distribution patterns in England, incentives must encourage 

adoption of BEVs and PVs in synergy, narrowing the regional imbalance particularly 

between rural and urban areas. This will help facilitate the aspirational integration of 

energy and transport sectors (House of Commons Library, 2023).  

 

5.4. Study Limitations and Further Research.  

The complex interrelating network of local characteristics collectively responsible for 

determining BEV and PV adoption, limits this study to merely speculating the influence of 

the independent variables in this study, exemplified by the notable uncertainty associated 

with the regression analysis. Whilst useful for assessing diffusion nationally, the local 

authority scale limits analysis of more local forces determining ETT adoption. To uncover 

unexplored determinants of adoption, particularly for BEVs where very little variance is 

explained in this study, this report advocates conducting further smaller scale, qualitative 
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studies within English neighbourhoods. Additionally, given the dynamic nature of ETT 

markets detected in Section 5.1., this dissertation advocates regular monitoring of BEV 

and PV diffusion, to better understand the pathways of anticipated rapid market growth.  

 

 

6. Conclusion   

Using a variety of analytical techniques, this study explored the characteristics and 

determinants of BEV and PV adoption through time and space. The major contribution of 

this paper is the temporal and geographical misfit in the distribution of BEVs and PVs in 

England, a phenomenon only previously observed elsewhere. This has serious 

implications for the UK Government’s aspirational development of smart charging 

infrastructure, intending to integrate energy and transport sectors. PV markets were 

observed to be more mature, but the accelerating growth of BEV adoption arouses 

uncertainty over the future composition of ETT markets. The spatial variance in PV and 

BEV diffusion, appearing almost inverse, has been attributed to their unique determinants 

of adoption. Generally, the local characteristics in this study exerted conflicting control over 

determining PV and BEV adoption and were more effective at determining PV than BEV 

adoption, with the regression models accounting for 64% compared to only 3.4% variance 

in adoption. Therefore, this dissertation suggests that the BEV adopter group are more 

diverse and sporadically distributed in England. 

Given the observed variance within global statistics, this dissertation emphasised the 

importance of applying both global and local analytical techniques to better understand the 

regional nuances of BEV and PV diffusion. Although subject to considerable uncertainties, 

wider contextual complexities and data resolution limitations, this does not detract from the 

valuable conclusions drawn from this study. Given the dynamic nature of BEV and PV 

markets, this study stresses the importance of consistently monitoring adoption. This is 

useful for shaping relevant and effective policy to stimulate uniform ETT diffusion. This has 

relevance both within England, but also for the rest of the UK and other nations 

undergoing a similar decarbonisation process. To promote the necessary adoption of 

BEVs and PVs in synergy, this study advocates more localised ETT incentives which 

reduce local barriers to adoption. However, further smaller scale and qualitative research 

is crucial to understand the forces behind identified determinants of adoption, particularly 

in understanding the variance in BEV and PV diffusion not explained by this study. 
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